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Abstract

A natural extension of the Wigner function to the space of irreducible unitary
representations of the Weyl–Heisenberg group is discussed. The action of the
automorphisms group of the Weyl–Heisenberg group onto Wigner functions
and their generalizations and onto symplectic tomograms is elucidated. Some
examples of physical systems are considered to illustrate some aspects of the
characterization of the Wigner functions as solutions of differential equations.

PACS numbers: 03.65−w, 03.65.Fd, 02.30.Uu

1. Introduction

The Wigner function [1] can be defined as the Weyl symbol [2] of a density state [3]. The
Weyl symbol of any operator is defined in terms of the parity operator P and displacement
operator D(z) resulting from the construction of a Weyl system. Both operators are
exponential functions of boson annihilation and creation operators, a and a†. The parity
operator depends quadratically on them, P = exp(iπa†a), and the displacement linearly,
D(z) = exp(za†−z∗a). The parameter z is a complex number which can be expressed in terms
of phase space coordinates as q = √

2 Re z, p = √
2 Im z. Creation and annihilation operators

are associated with a realization of the generators of the (2+1)-dimensional Weyl–Heisenberg
group and D(z) with its infinite-dimensional unitary representations. Generalization to the
(2n + 1)-dimensional case is straightforward.

There are various ways to generalize the construction of the Wigner function. One method
consists of extending the parity operator by changing the angle appearing in its definition from
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π to an arbitrary value θ : Pθ = exp(iθa†a). In fact, this generalization is closely related to
the construction of the so-called s-ordered quasi-distributions or Wigner functions [4].

Another generalization consists of considering the automorphism group of the Weyl–
Heisenberg group and to extending the displacement operator D(z). Because the displacement
operators D(z) are obtained from the irreducible unitary representations of the Weyl–
Heisenberg group, we will have to study the action of the automorphism group on the space
of their irreducible unitary representations, which are labeled by a real number γ . One of the
aims of this work is to focus on this generalization.

The Radon transform [5] of the Wigner function was used to suggest a probability
distribution description of quantum states [6]. These probability distributions, called
symplectic tomograms of the quantum states, are related to Wigner functions by a linear
integral transform. Then we can determine the action on symplectic tomograms of any
transformation on the Wigner function. Thus another goal of this work will be to get the
transformation properties of the symplectic tomograms induced by transformation of the
Wigner function under the action of the group of the automorphisms of the Weyl–Heisenberg
group.

2. Wigner functions and Weyl symbols of operators

Further insight on the physical meaning of the Wigner function of a density state ρ, defined as

Wρ(p, q) =
∫

R
n

dnx e−ip·x〈q + x/2|ρ|q − x/2〉 (1)

(hereafter h̄ = 1 and p, q ∈ R
n) was obtained from its representation as the expectation value

of the shifted parity operator P (see Royer [7]):

Wρ(p, q) = 2n Tr[ρD(p, q)PD†(p, q)] = 2n Tr[ρD(2p, 2q)P]. (2)

The displacement operators D(p, q) have the usual form

D(p, q) = exp[i(p · Q̂ − q · P̂)], [Q̂j , P̂k] = iδjkI, (j, k = 1, . . . , n). (3)

The shifted parity operator was discussed at length in [4, 7, 8]. Formula (2) yields the Weyl
symbol of a density state. By means of an analogous formula we may define the Weyl
symbol of any (bounded) operator, in general not satisfying the properties of a density state:
ρ† = ρ, ρ � 0, Tr ρ = 1. For simplicity we will call such symbols generalized Wigner
functions.

The formula used by Royer makes more apparent the possibility to generalize the
Wigner function as a function on the (representations of the) Weyl–Heisenberg group. This
generalization allows for both the study of the transformation properties of the Wigner function
under the automorphisms of the Weyl–Heisenberg group and the search for differential
equations able to characterize them. To this aim, mainly to fix notations, we now briefly
recall the theory of unitary irreducible representations of the Weyl–Heisenberg group.

3. Automorphisms and representations of the Weyl–Heisenberg group

Let (V , ω) be a symplectic, 2n-dimensional real vector space and consider the (2n + 1)-
dimensional Weyl–Heisenberg group WH(n) which is the central extension of the Abelian
group V with respect to the two-cocycle defined by ω. The Weyl–Heisenberg group WH(n)

can be presented as the set of pairs g = (v, t) ∈ V × R with the following composition rule:

g ◦ g′ = (v, t) ◦ (v′, t ′) = (
v + v′, t + t ′ + 1

2ω(v, v′)
)
. (4)

2
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The automorphisms group Aut(WH(n)) of the Weyl–Heisenberg group WH(n) is the set
of bijections φ: WH(n) → WH(n) such that φ(g) ◦ φ(g′) = φ(g ◦ g′). The structure of the
automorphisms group of the Weyl–Heisenberg group is described [9] by the following four
subgroups:

(i) The automorphisms S of the linear symplectic group in 2n dimensions Sp(n), acting on
vectors of V preserving the symplectic form: ω(Sv, Sv′) = ω(v, v′). This group has
dimension n(2n + 1).

(ii) The inner automorphisms: φg′(g) = g′ ◦ g ◦ (g′)−1, that take the particular form,
φ(v′,t ′)(v, t) = (v, t + ω(v′, v)), which is a subgroup of dimension 2n.

(iii) The dilations φλ(v, t) = (λv, λ2t) with one parameter.
(iv) The subgroup Z2 constituted of the identity and a discrete automorphism, the inversion

ı : ı(v, t) = (Av,−t), where A is an anti-symplectic involution on V , i.e. ω(Av, Av′) =
−ω(v, v′) and A2 = I. Having chosen such an involution A0, any other may be obtained
as A = SA0S

−1 by conjugating with a symplectic automorphism S. For instance, in a
given Darboux chart, where v = (p, q), v′ = (p′, q′) and ω(v, v′) = p · q′ − p′ · q, A0

may be chosen as the anti-symplectic involution A0(p, q) = (q, p); also one could choose
A′

0(p, q) = (p,−q) and A′
0 = SA0S

−1 with S(p, q) = (p + q,−p + q)/
√

2.

Any element φ ∈ Aut(WH(n)) can be written as a product of these four kinds of
automorphisms. The group Aut(WH(n)) has dimension (2n + 1)(n + 1).

The unitary representations of the Weyl–Heisenberg group WH(n) may be constructed
from a Weyl system on the symplectic space (V , ω), that is a strongly continuous map W

which associates with any vector v a unitary operator W(v) acting on a Hilbert space H and
satisfying

W(v)W(v′) = W(v + v′) exp

(
i

2
ω(v, v′)

)
, (5)

which implies

W(v)W(v′) = W(v′)W(v) exp(iω(v, v′)). (6)

The von Neumann theorem [10] shows that it is always possible to realize the Hilbert space
H as the space L2(L, dnq) of square integrable functions with support in L, where L is any
Lagrangian subspace of V with the corresponding polarization, V = L⊕L∗, (q, p) ∈ L⊕L∗.
The unitary operators realizing the elements of the group are the usual displacement operators
introduced above: W(v) = D(p, q). Now, the associated canonical operators with their
commutation relations [Q̂j , P̂k] = iδjkI (j, k = 1, . . . , n) are a realization of the Lie algebra
of the generators {el}2n

l=0 of the Weyl–Heisenberg group, and a unitary irreducible representation
is provided by the expression:

U(g) = U(p, q, t) = D(p, q) eitI . (7)

In order to better put in evidence the role played by the mathematical structures involved, we
prefer not to introduce the polarization v = (p, q), and write the above representation in a
coordinate-free form in terms of the Hermitian generators R(ek) of U, with R(e0) = I, as

U(g) = U(v, t) = W(v) eitI = eiR(v) eitI . (8)

The group Aut(WH(n)) acts on the space of irreducible unitary representations of WH(n)

in the following way:

φ∗U(g) ≡ Uφ(g) := U(φ(g)), φ ∈ Aut(WH(n)) (9)

and Uφ is a new representation.

3
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The irreducible representations of WH(n) are parametrized up to a unitary equivalence
by a real parameter γ . Kirillov’s theory of coadjoint orbits [11] provides a natural way to
construct them. In fact, Kirillov’s theorem establishes that for nilpotent groups there is a
one-to-one correspondence between coadjoint orbits of the group and equivalence classes of
unitary irreducible representations of it. It is easy to check that for the Weyl–Heisenberg group
the space of coadjoint orbits has two strata, the regular one whose coadjoint orbits are copies
of the symplectic linear space (V , ω) and are labeled by γ �= 0, and the singular stratum,
corresponding to the label γ = 0 whose coadjoint orbits are points, hence giving rise to trivial
representations. The parameter γ weights the central element of the group and it can be easily
read out from a given irreducible representation looking at Uγ (0, t) = eiγ t and therefore the
action of Aut(WH(n)) on the set of irreducible representations can be analyzed.

Symplectic and inner automorphisms form a subgroup Aut0(WH) ⊂ Aut(WH) which
does not change γ . In fact, when φ ∈ Aut0(WH) we have Uφ(0, t) = U(φ(0, t)) = U(0, t),
then there exists a unitary representation Vφ of Aut0(WH) relating Uφ and U:

Uγ,φ(g) = Uγ (φ(g)) = VφUγ (g)V
†
φ . (10)

For inner automorphisms φg′, Vφ = Uγ (g′) while for symplectic automorphisms S, Vφ =
VS = exp

[
i
(
Alm

S R(el)R(em)
)]

exp[iγ t], where Alm
S is a real symmetric 2n × 2n-matrix

depending on S as discussed in section 5, while R(ek), k = 1, . . . , 2n, and R(e0) = γ I

are the Hermitian generators of Uγ .

In contrast, for dilations φλ such a unitary Vφ does not exist

Uγ (φ(g)) ≡ Uγ,φ(g) �= VφU(g)V
†
φ . (11)

In fact Uγ,φ(g) is not equivalent to Uγ (g) since Uγ,φ(0, t) = eiλ2γ t is a representation labeled
by λ2γ . Dilations do not change the sign of γ ; the inversion ı(v, t) = (Av,−t) changes the
sign of γ.

4. Wigner functions on The Weyl–Heisenberg group

The group Aut(WH) acts transitively on the space ŴH of equivalence classes of irreducible
unitary representations of WH. On the other hand, by virtue of (7), (8), the usual Wigner
function (2), may be written as

Wρ(v; γ = 1) = 2n Tr[ρU(v, t)PU †(v, t)] = 2n Tr[ρW(2v)P], (12)

and this shows that it depends on a given unitary representation, that of (7). In order to
introduce a generalized definition of the Wigner function for representations with γ �= 1, we
have to choose previously a representative Uγ out of any equivalence class [U ]γ . Bearing
in mind the previous analysis of the action of Aut(WH), we choose these representatives as
follows:

Uγ (v, t) := Uγ=1(
√

γ v, γ t) = W(
√

γ v) eiγ t (γ > 0),

Uγ (v, t) := Uγ=1(
√

|γ |Av,−|γ |t) = W(
√

|γ |Av) eiγ t (γ < 0).
(13)

In this way all representations are given by operators defined on the same Hilbert space, i.e.,
are unitary with respect to the same Hermitian structure. Since representations with negative
labels γ are obtained by acting with the inversion operator on those with positive labels, in
what follows we limit the discussion to the case γ > 0.

Once a representation Uγ has been chosen, the parity operator P may be expressed as

P = γ n

2n

∫
d2nv

(2π)n
W(

√
γ v) = 1

2n

∫
d2nv

(2π)n
W(v). (14)

4
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From this expression the properties

P = P†, PUγ (v, t)P = Uγ (−v, t) (15)

readily follow by using (5) and ( 6) as well as the Dirac delta function representation:∫
d2nv

(2π)n
exp(iω(v, v′)) = (2π)nδ(v′). (16)

These properties with Uγ (0) = I yield

P2 = I, P−1 = P = P†. (17)

At the same time, we define the associated (generalized) Wigner function of a density
state ρ as

Wρ(v; γ ) := 2n Tr
[
ρUγ (v, t)PU †

γ (v, t)
] = 2n Tr[ρW(2

√
γ v)P] = Wρ(

√
γ v; 1). (18)

We remark that, while the dependence on the parameter t disappears and the function is
invariant on the subgroup (0, t), a new dependence on the representation label γ appears.

As a result of this definition, the normalization property holds∫
γ n d2nv

(2π)n
Wρ(v; γ ) = Tr

[
ρ

∫
2nγ n d2nv

(2π)n
W(2

√
γ v)P

]
= Tr ρ. (19)

In other words, the Wigner function may also be regarded as a density, i.e., the coefficient of a
volume form, and in the study of the transformation properties under the group dilations one
should take into account the effect of the transformation on the volume form to preserve the
above normalization property.

5. Transformation properties of Wigner functions under automorphisms

We begin by considering the action of a symplectic automorphism S [12]. As we said, the
action of S on a representation Uγ may be described by a unitary operator VS, which commutes
with the parity because it depends only on quadratic functions of the group generators. Then
the transformed Wigner function of a state is just the Wigner function of the anti-transformed
state,

Wρ(Sv; γ ) = 2n Tr
[
ρVSUγ (v, t)V

†
SPVSU

†
γ (v, t)V

†
S

]
= 2n Tr

[
V

†
S ρVSW(2

√
γ v)P

] = W
V

†
S ρVS

(v; γ ). (20)

In particular, we may consider the action of any generator of the symplectic group Sp(n, R)

on the symplectic space V. These actions are generated by n(2n + 1) linear vector fields X(α)

which realize the Lie algebra of Sp(n, R)

X(α) = (S(α))hl xh

∂

∂xl

, α = 1, . . . , n(2n + 1), (21)

where (S(α))hl are matrices such that the products

(S(α))hl ω
lk =: (AS(α) )hk (22)

are real symmetric matrices [13].
Integration of the vector field

∑
α λαX(α) yields a one-parameter group of symplectic

automorphisms:

φτ,{λα} := exp

[
τ

n(2n+1)∑
α=1

λαX(α)

]
. (23)

5
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On the other hand, any generator is represented by a Hermitian operator X̂(α) which
depends quadratically on the representation generators R(ek):

X̂(α) =
2n∑

h,k=1

R(eh) (AS(α) )hk R(ek), (24)

where (AS(α) )hk is the above real symmetric 2n × 2n-matrix. In other words, these n(2n + 1)

Hermitian operators are the generators of the representation VS of the symplectic group on the
Hilbert space H. So, when S = φτ,{λα}, the associated unitary operator is

VS = exp

[
iτ

∑
α

λα (AS(α) )lm R(el)R(em)

]
exp[iγ t]. (25)

For Sα = φτ,α := exp[τX(α)], a differentiation with respect to τ at τ = 0 of

Uγ,φτ,α
(g) = Uγ (φτ,α(g)) = VSα

Uγ (g)V
†
Sα

(26)

yields

LX(α)Uγ (g) = i[X̂(α), Uγ (g)], α = 1, 2, . . . , n(2n + 1). (27)

Then, the action generated by X(α) on the Wigner function may be written as

Wρ(φτ,α(v); γ ) = W
V

†
Sα

ρVSα
(v; γ ). (28)

Differentiation with respect to τ at τ = 0 gives the infinitesimal actions:

LX(α)Wρ(v; γ ) − Wi[ρ,X̂(α)](v; γ ) = 0, α = 1, . . . , n(2n + 1). (29)

The action of an inner automorphism φg′ is described by a unitary operator that is just the
representation operator associated with g′. Thus

Uγ (g′)Uγ (g)U †
γ (g′) = Uγ (g) eiγ θ (30)

and the Wigner function is invariant as the phase factors cancel each other:

Wρ(φg′(v); γ ) = 2n Tr
[
ρUγ (g′)Uγ (v, t)U †

γ (g′)PUγ (g′)U †
γ (v, t)U †

γ (g′)
]

= 2n Tr[ρW(2
√

γ v)P] = Wρ(v; γ ). (31)

We observe that inner automorphism actions are generated by translations on t , while the
fields X(α) on phase space vanish. So, at infinitesimal level, we get only the trivial equation:

∂

∂t
Wρ(v; γ ) = 0. (32)

We now consider the action of a dilation φλ : φλ(v, t) = (λv, λ2t). Then, as a result of
our choice of the representatives Uγ , we get

Uγ (φλ(v, t)) = Uγ (λv, λ2t) = Uλ2γ (v, t). (33)

So, the Wigner function transforms as

Wρ(φλ(v); γ ) = Wρ(λv; γ ) = 2n Tr[ρUλ2γ (v, t)PUλ2γ (v, t)] = Wρ(v; λ2γ ), (34)

while ∫
λ2nγ n d2nv

(2π)n
Wρ(λv; γ ) =

∫
λ2nγ n d2nv

(2π)n
Wρ(v; λ2γ ) = Tr [ρ] . (35)

The dilation transformation may be more interestingly written as

Wρ

(
λv; γ

λ2

)
= Wρ(v; γ ). (36)

6
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We observe that the dilation (λv, λ2t) yields the expected dilation (λv; γ /λ2) on the label γ,

which is ‘dual’ of the parameter t. For an infinitesimal dilation λ = 1 + ε we may expand

Wρ(v; γ ) = Wρ

(
(1 + ε) v; γ

(1 + ε)2

)
= Wρ(v; γ ) + ε

[
v
∂Wρ

∂v
(v; γ ) − 2γ

∂Wρ

∂γ
(v; γ )

]
+ O(ε2) (37)

and obtain the following differential equation for the Wigner function:

v
∂Wρ

∂v
(v; γ ) − 2γ

∂Wρ

∂γ
(v; γ ) = 0. (38)

6. Restoring Planck’s constant

So far, we have put h̄ = 1. It is possible however to study the dependence on h̄ by using the
displacement operators given, instead of (3), by the expressions:

D(p, q) = exp

[
i

(
p√
h̄

· Q̂√
h̄

− q√
h̄

· P̂√
h̄

)]
(39)

and the canonical commutation relations
1

h̄
[Q̂j , P̂k] = iδjkI, (j, k = 1, . . . , n), (40)

while t is replaced by t/h̄ and the unitary representation given by (8) becomes

U

(
v√
h̄

,
t

h̄

)
= W

(
v√
h̄

)
ei t

h̄
I = ei R(v)

h̄ ei t
h̄
I , (41)

so that eventually we get the above formulae with γ replaced by γ /h̄ everywhere. In particular,
for the Wigner function we have

Wρ(
√

γ v; 1) = Wρ(v; γ ) −→ Wρ

(√
γ

h̄
v; 1

)
= Wρ

(
v; γ

h̄

)
. (42)

Under the action of a dilation, (λv, λ2t) → (λv; γ /λ2) → (λv; γ /λ2h̄) and we may
choose γ = 1, to get a differential equation for the Wigner function Wρ

(
v; 1

h̄

)
corresponding

to the infinitesimal ‘dilation’ (λv; 1/λ2h̄). However, we should remark here that an equation
such as

v
∂Wρ

∂v
(v; γ ) + 2h̄

∂Wρ

∂h̄
(v; γ ) = 0 (43)

cannot hold in general, in contrast with (38), because the functional dependence of ρ on h̄

varies from state to state. So, we get different differential equations for different states, and
the above equation, for instance, holds only when the density state ρ depends on (1/h̄)n for a
system with n degrees of freedom.

To clarify this point we now discuss two different examples. We consider two physical
states: the ground state of a three-dimensional isotropic harmonic oscillator and the ground
state of a hydrogen atom (with dimensional units restored).

Example 1. For a harmonic oscillator of mass m and frequency ω one has a characteristic unit
length � = √

h̄/mω and the ground state wavefunction is

ϕ0(r) = π− 3
4 �− 3

2 exp

(
− r2

2�2

)
. (44)

7
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The corresponding Wigner function reads

Wϕ0(p, q; h̄) = 8 exp

(
−q2

�2
− �2p2

h̄2

)
= 8 exp

(
−mω

h̄
q2 − (mω)−1

h̄
p2

)
, (45)

so one can see at once that this function satisfies the partial differential equation,

p
∂Wϕ0

∂p
+ q

∂Wϕ0

∂q
+ 2h̄

∂Wϕ0

∂h̄
= 0, (46)

which reflects the scaling properties associated with the transformation properties of the
Wigner function under a dilation, when γ → 1/h̄. The above differential equation is satisfied
by all Wigner functions of the excited states of the harmonic oscillator, as well as by those of
pure states expressible as their superposition with coefficients independent of h̄ as, e.g., the
Wigner function of coherent states or of convex sums of the harmonic oscillator eigenstates.

Example 2. In the case of the hydrogen atom, the ground-state normalized wavefunction is

ψ0(r) = π− 1
2 a

− 3
2

B exp

(
− r

aB

)
, (47)

where aB is the Bohr radius

aB = h̄2

me2
, (48)

with m, e being the mass and electric charge of the electron, respectively. The corresponding
Wigner function reads

Wψ0(p, q; h̄) = 1

πa3
B

∫
R

3
d3x exp

(
−i

p · x

h̄

)
exp

[
−

∣∣q + x
2

∣∣
aB

−
∣∣q − x

2

∣∣
aB

]
, (49)

so it depends on the ratio ∼q/h̄2 and the product ∼ph̄. As a consequence, the Wigner function
is invariant under the scaling (p, q, h̄) → (λ−1p, λ2q, λh̄):

Wψ0(λ
−1p, λ2q, λh̄) = Wψ0(p, q; h̄). (50)

At the infinitesimal level, this yields the differential equation

−p
∂Wψ0

∂p
+ 2q

∂Wψ0

∂q
+ h̄

∂Wψ0

∂h̄
= 0, (51)

which is different from that satisfied by the harmonic oscillator Wigner function (46). Of
course, the above equation is satisfied also by the Wigner functions of the excited states of the
hydrogen atom as well as of their convex superpositions, with coefficients independent of h̄.

7. Tomograms and Weyl–Heisenberg group automorphisms

In this section, we study the action on symplectic tomograms of the group of automorphisms
of the Weyl–Heisenberg group Aut(WH(n)).

Again we put h̄ = 1. We will just consider n = 1, as the general case follows
straightforwardly. We recall that, given a density state ρ, its symplectic tomogram W̃ρ(X,μ, ν)

depends on the real parameters X,μ, ν and is defined by

W̃ρ(X,μ, ν) = Tr[ρδ(X − μQ̂ − νP̂ )]. (52)

The symplectic tomogram above can be written as the Radon transform of the Wigner
function Wρ(p, q; γ = 1) of the density matrix ρ:

W̃ρ(X,μ, ν) =
∫

R
2
Wρ(p, q; γ = 1)δ(X − μq − νp)

dp dq

2π
. (53)
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The normalization of the Wigner function of the density state yields the normalization of the
tomogram: ∫

W̃ρ(X,μ, ν) dX = 1. (54)

The density state ρ is expressed in terms of its tomogram as

ρ = 1

2π

∫
R

3
W̃ρ(X,μ, ν) exp[i(X − μQ̂ − νP̂ )] dX dμ dν, (55)

and this corresponds to writing the Wigner function as the Radon anti-transform of the
tomogram

Wρ(p, q; γ = 1) = 1

2π

∫
R

3
W̃ρ(X,μ, ν) exp[i(X − μq − νp)] dX dμ dν. (56)

By means of the above relations we are now able to study the action of the automorphisms
of the Weyl–Heisenberg group onto symplectic tomograms. In fact, we may use the Radon
transform to define

φ∗W̃ρ(X,μ, ν) = W̃ρ(φ(X,μ, ν)) :=
∫

R
2
Wρ(φ(p, q; γ = 1))δ(X − μq − νp)

dp dq

2π

(57)

and then use the transformation properties of the Wigner functions discussed in section 5 to
obtain the corresponding tomographic properties.

For instance, in the case of the action of the symplectic automorphism S ∈ Sp(1, R) on
the phase space V, φ (p, q) = Sv, one obtains

W̃ρ(S(X, μ)) =
∫

Wρ(Sv)δ(X − μ · v)
d2v

2π
=

∫
Wρ(v)δ(X − μ · S−1v)

d2v

2π

=
∫

Wρ(v)δ(X − ((S−1)Tμ) · v)
d2v

2π
= W̃ρ(X, (S−1)Tμ), (58)

where μ = (ν, μ). On the other hand, by Radon transforming the right-hand side of (20),
we get

W̃ρ(X, (S−1)Tμ) = W̃ρ(S(X, μ)) = W̃
V

†
S ρVS

(X, μ). (59)

Analogously, under inner automorphisms, the tomogram W̃ρ is invariant, just as the
Wigner function.

Finally, we may generalize the definition of symplectic tomogram by using the Wigner
functionWρ(v; γ ) in the Radon transform. This introduces a dependence on the representation
label γ :

W̃ρ(X, μ; γ ) = W̃ρ

(
X,

1√
γ

μ; 1

)
, (60)

which stems out from

W̃ρ(X, μ; γ ) :=
∫ √

γ d2v

2π
Wρ(v; γ )δ(X − μ · v)

=
∫

d2v

2π
Wρ(v; γ = 1)δ

(
X − μ√

γ
· v

)
. (61)

In this way, any scaling (v; γ ) �→ (λv; γ ), that induces the transformation Wρ(λv; γ ) →
Wρ(v; λ2γ ), will give

W̃ρ

(
X,

μ

λ
; γ

)
= W̃ρ(X, μ; λ2γ ), (62)
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which leads to

W̃ρ

(
X,

μ

λ
; γ

λ2

)
= W̃ρ(X, μ; γ ). (63)

Of course, as was discussed in the previous sections, also the above tomographic
transformation properties have associated differential equations.

We conclude this section by remarking that in the case of the multi-mode system, one
could also use different parameters γk for each kth mode contribution to the Wigner function.
For instance, this possibility was used to formulate a separability criterion for Gaussian photon
states [14], but in this paper we consider only homogeneous scaling law with all γk’s equal to
the same γ , that is

W̃ρ(X, μ; γ ) =
∫

γ n dnp dnq

(2π)n
Wρ(p, q; γ )

n∏
k=1

δ(Xk − μkqk − νkpk). (64)

8. Concluding remarks

Wigner functions play a prominent role in the formulation of quantum mechanics on phase
space, Wigner considered them associated with states or wavefunctions. Their generalization
from pure states to mixed states and further to any suitable operator, provides a very interesting
setting to deal with noncommutative geometry [15–17]. In particular, the Wigner function
turns out to be very useful in the study of the quantum-classical transition [18]. From all these
applications it is therefore not surprising that many generalizations have been proposed and
elaborated in the existing literature.

As usual, generalizations identify some aspects which seem to be desirable and useful
and try to propose an enlarged setting where these aspects are preserved. Our formulae (2)
and (12) allow us to discuss more clearly the relation of our generalization to some others we
are aware of.

Our idea of using the parity operator to deal with the Wigner function, motivated from
Royer [7] and Grossmann [19] (but see also [20–22]), uses the fact that the parity operator,
representing reflections about the origin of the symplectic vector space (the Abelian vector
group we are considering), may be translated with the help of the displacement operator to
provide reflections about any point of the ‘affine space’. The family of all these operators,
one for each point, constitutes what we have called elsewhere a tomographic set [23, 24], this
set separates states. The Wigner function is given by the expectation value of these reflection
operators on the state we are dealing with, this association depends on the point and on the
representation we are using.

If the similarity transformation acting on the parity operator is transferred to the state, one
gets an orbit in the coadjoint representation. This aspect is what Ali and collaborators [25–27]
have considered most fundamental to present their generalization. They rely on the results
by Kirillov [11] relating coadjoint orbits and unitary irreducible representations. To go from
one orbit to another, or from one representation to another, they introduce some appropriate
conditions on the group and the orbits. For a recent paper dealing with some of these aspects
in the framework of wavelets and phase space see [28].

The generalization proposed by Tate [29, 30], but see also Mukunda and collaborators
[31, 32], uses the fact that the point about which the previous reflections are performed may
be identified as the ‘mid-point’ of a geodesic on a symmetric space, this remark allows us to
implement an operator on the setting of symmetric spaces with properties similar to those of
the displaced parity operator used in this paper.
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The merit of our approach is to show very clearly that the Wigner function is defined
on a group and on the space of its unitary irreducible representations, therefore we may use
this as a starting point to generalize the construction also to other finite dimensional groups
along the lines of [33]. As is shown in that paper, this kind of generalization may be quite
useful to apply generalized Wigner functions to deal with quantum computation and quantum
information [34].

Other possible generalizations, on which we are presently working, consider unitary
operators associated with other finite-dimensional subgroups (replacing the parity operator
by an appropriate choice) with the requirement that the automorphism group of the space on
which we want to define the generalized Wigner function, acts on this subgroup in a way
that gives rise to a tomographic set of operators. We shall come back to these points in a
forthcoming paper.
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